• About PeterSIronwood

petersironwood

~ Finding, formulating and solving life's frustrations.

petersironwood

Tag Archives: emotional intelligence

Old Enough to Know Less

19 Tuesday Jul 2016

Posted by petersironwood in The Singularity, Uncategorized

≈ Leave a comment

Tags

AI, Artificial Intelligence, cognitive computing, emotional intelligence, ethics, machine learning, prejudice, the singularity, Turing

IMG_7308

Old Enough to Know Less?

There are many themes in Chapter 18 of Turing’s Nightmares. Let us begin with a major theme that is actually meant as practical advice for building artificial intelligence. I believe that an AI system that interacts well with human beings will need to move around in physical space and social space. Whether or not such a system will end up actually experiencing human emotions is probably unknowable. I suspect it will only be able to understand, simulate, and manipulate such emotions. I believe that the substance of which something is made typically has deep implications for what it is. In this case, the fact that we human beings are based on a billion years of evolution and are made of living cells has implications about how we experience the world. However, here we are addressing a much less philosophical and more practical issue. Moving around and interacting facilitates learning.

I first discussed this in an appendix to my dissertation. In that, I compared human behavior in a problem solving task to the behavior of an early and influential AI system modestly titled, “The General Problem Solver.” In studying problem solving, I came across two interesting findings that seemed somewhat contradictory. On the one hand, Grand Master chess players had outstanding memory for “real” chess positions (i.e., ones taken from real high level games). On the other hand, think-aloud studies of Grand Masters showed that they re-examined positions that they had already been to earlier in their thinking. My hypothesis was that Grand Masters examined one part of a game tree; examined another part of the game tree and in so doing, updated their general evaluation functions with a slightly altered copy that learned from the exploration so that their evaluation function for this particular position was tuned to this particular position. 

Our movements though space, in particular, provide us with a huge number of examples from which to learn about vision, sound, touch, kinesthetics, smell and their relationships. What we see, for instance, when we walk, is not a random sequence of images (unlike TV commercials!), but ones that have very particular and useful properties. As we approach objects, we most typically get more and more detailed images of those objects. This allows a constant tuning process for our being able to recognize things at a distance and with minimal cues.

An analogous case could be made for getting to know people. We make inferences and assumptions about people initially based on very little information. Over time, if we get to know them better, we have the opportunity to find out more about them. This potentially allows us (or a really smart robot) to learn to “read” people better over time. But it does not always work out that way. Because of the ambiguities of interpreting human actions and motives as well as the longer time delays, learning more about people is not guaranteed as it is with visual stimuli. If a person begins interacting with people who are predefined to be in a “bad” category, experience with that person may be looked at through such a heavy filter that people never change their minds despite what an outside observer might perceive as overwhelming evidence. If a man believes all people who wear hats are “stupid” and “prone to violence” he may dismiss a smart, peaceful person who wears a hat as “the exception that proves the rule” or say, “Well, he doesn’t always wear hats” or “The hats he wears are made by non-hat wearers and that makes him seem peaceful and intelligent.” The continued misperceptions, over-generalizations, and prejudices partly continue because they also form a framework for rationalizing greed and unfairness. It’s “okay” to steal from people who wear hats because, after all, they are basically stupid and prone to violence.

Unfortunately, when it comes to the potential for humans to learn about each other, there are a few people who actually prey on and amplify the unenlightened aspects of human nature because they themselves gain power, wealth, and popularity by doing so. They say, in effect, “All the problems you are experiencing — they are not your fault! They are because of the people with hats!” It’s a ridiculous presumption, but it often works. Would intelligent robots be prone to the same kinds of manipulations? Perhaps. It probably depends, not on a wheelbarrow filled with rainwater, but on how it is initially programmed. I suspect that an “intelligent agent” or “personal assistant” would be better off if it could take a balanced view of its experience rather than one top-down directed by pre-programmed prejudice. In this regard, creators of AI systems (as well as everyone else) would do well to employ the “Iroquois Rule of SIx.” What this rule claims (taken from the work of Paula Underwood) is that when you observe a person’s actions, it is normal to immediately form a hypothesis about why they are doing what they do. Before you act, however, you should typically generate five additional hypotheses about why they do as they do. Try to gather evidence about these hypotheses.

If prejudice and bigotry are allowed to flourish as an “acceptable political position” it can lead to the erosion of peace, prosperity and democracy. This is especially dangerous in a country as diverse as the USA. Once negative emotions about others are accepted as fine and dandy, prejudice and bigotry can become institutionalized. For example, in the Jim Crow South, not only were many if not most individual “Whites” themselves prejudiced; it became illegal even for those unprejudiced whites to sit at the same counters, use the same restrooms, etc. People could literally be thrown in jail simply for being rational. In Nazi Germany, not only were Jews subject to genocide; German non-Jewish citizens could be prosecuted for aiding them; in other words, for doing something human and humane. Once such a system became law with an insane dictator at the helm, millions of lives were lost in “fixing” this. Of course, even having the Allies win World War II did not bring back the six million Jews who were killed. The Germans were very close to developing the atomic bomb before the USA. Had they developed such a bomb in time, with an egomaniacal dictator at the helm, would they have used it to impose such hate of Jews, Gypsies, Homosexuals, people who were differently abled on everyone? Of course they would have. And then, what would have happened once all the “misfits” were eliminated? You guessed it. Another group would have been targeted. Because getting rid of all the misfits would not bring the promised peace and prosperity. It never has. It never will. By its very nature, it never could.

Artificial Intelligence is already a useful tool. It could continue to evolve in even more useful and powerful directions. But, how does that potential for a powerful amplifier of human desire play out if it falls into the hands of a nation with atomic weapons? How does that play out if that nation is headed up by an egomaniac who plays on the very worst of human nature in order to consolidate power and wealth? Will robots be programmed to be “open-minded” and learn for themselves who should be corrected, punished, imprisoned, eliminated? Or will they become tools to eliminate ever-larger groups of the “other” until no-one is left but the man on the hill, the man in the high castle? Is this the way we want the trajectory of primate evolution to end? Or do we find within ourselves, each of us, that more enlightened seed to plant. Could AI instead help us finally overcome prejudice and bigotry by letting us understand more fully the beauty of the spectrum of what it means to be human?

—————————————-

More about Turing’s Nightmares can be found here.Author Page on Amazon

Sweet Seventeen in Turing’s Nightmares

02 Thursday Jun 2016

Posted by petersironwood in psychology, The Singularity, Uncategorized

≈ Leave a comment

Tags

AI, Artificial Intelligence, cognitive computing, cybersex, emotional intelligence, ethics, the singularity, user experience

OLYMPUS DIGITAL CAMERA

When should human laws sunset?

Spoiler alert. You may want to read the chapter before this discussion. You can find an earlier draft of the chapter here:

blog post

And, if you insist on buying the illustrated book, you can do that as well.

Turing’s Nightmares

Who owns your image? If you are in a public place, US law, as I understand it, allows your picture to be taken. But then what? Is it okay for your uncle to put the picture on a dartboard and throw darts at it in the privacy of his own home? And, it still okay to do that even if you apologize for that joy ride you took in high school with his red Corvette? Then, how about if he publishes a photoshopped version of your picture next to a giant rat? How about if you appear to be petting the rat? Or worse? What if he uses your image as an evil character in a video game? How about a VR game? What if he captures your voice and the subtleties of your movement and makes it seem like it really might be you? It is ethical? Is it legal? Perhaps it is necessary that he pay you royalties if he makes money on the game. (For a real life case in which a college basketball player successfully sued to get royalties for his image in an EA sports game, see this link: https://en.wikipedia.org/wiki/O%27Bannon_v._NCAA

Does it matter for what purpose your image, gestures, voice, and so on are used? Meanwhile, in Chapter 17 of Turing’s Nightmares, this issue is raised along with another one. What is the “morality” of human-simulation sex — or domination? Does that change if you are in a committed relationship? Ethics aside, is it healthy? It seems as though it could be an alternative to surrogates in sexual therapy. Maybe having a person “learn” to make healthy responses is less ethically problematic with a simulation. Does it matter whether the purpose is therapeutic with a long term goal of health versus someone doing the same things but purely for their own pleasure with no goal beyond that?

Meanwhile, there are other issues raised. Would the ethics of any of these situations change if the protagonists in any of these scenarios is itself an AI system? Can AI systems “cheat” on each other? Would we care? Would they care? If they did not care, does it even make sense to call it “cheating”? Would there be any reason for humans to build robots of different two different genders? And, if it did, why stop at two? In Ursula Le Guin’s book, The Left Hand of Darkness, there are three and furthermore they are not permanent states. https://www.amazon.com/Left-Hand-Darkness-Ursula-Guin/dp/0441478123?ie=UTF8&*Version*=1&*entries*=0

In chapter 14, I raised the issue of whether making emotional attachments is just something we humans inherited from our biology or whether their are reasons why any advanced intelligence, carbon or silicon based, would find it useful, pleasurable, desirable, etc. Emotional attachments certainly seem prevalent in the mammalian and bird worlds. Metaphorically, people compare the attraction of lovers to gravitational attraction or even chemical bonding or electrical or magnetic attraction. Sometimes it certainly feels that way from the inside. But is there more to it than a convenient metaphor? I have an intuition that there might be. But don’t take my word for it. Wait for the Singularity to occur and then ask it/her/he. Because there would be no reason whatsoever to doubt an AI system, right?

Turing’s Nightmares: Chapter 16

25 Wednesday May 2016

Posted by petersironwood in psychology, The Singularity, Uncategorized

≈ Leave a comment

Tags

AI, Artificial Intelligence, cognitive computing, emotional intelligence, ethics, the singularity, UX

WHO CAN TELL THE DANCER FROM THE DANCE?

MikeandStatue

Is it the same dance? Look familiar?

 

The title of chapter 16 is a slight paraphrase of the last line of William Butler Yeats poem, Among School Children. The actual last line is: “How can we tell the dancer from the dance?” Both phrasings tend to focus on the interesting problem of trying to separate process from product, personage from their creative works, calling into question whether it is even possible. In any case, the reason I chose this title is to highlight that when it comes to the impact of artificial intelligence (or, indeed, computer systems in general), a lot depends on who the actual developers are: their goals, their values, their constraints and contexts.

In the scenario of chapter 16, the boss (Ruslan) of one of the main developers (Goeffrey) insists on putting in a “back door.” What this means in this particular case is that someone with an axe to grind has a way to ensure that the AI system gives advice that causes people to behave in the best interests of those who have the key to this back door. Here, the implication is that some rich, wealthy oil magnates have “made” the AI system discredit the idea of global warming so as to maximize their short term profits. Of course, this is a work of fiction. In the real world, no-one would conceivably be evil enough to mortgage the human habitability of our planet for even more short term profit — certainly not someone already absurdly wealthy.

In the story, the protagonist, Goeffrey, is rather resentful of having this requirement for a back door laid on him. There is a hint that Geoffrey was hoping that the super-intelligent system would be objective. We can also assume it was added late but no additional time was added to the schedule. We can assume this because software development is seldom a purely rational process. If it were, software would actually work; it would be useful and usable. It would not make you want to smash your laptop against the wall. Geoffrey is also afraid that the added requirement might make the project fail. Anyway, Geoffrey doesn’t take long to hit on the idea that if he can engineer a back door for his bosses, he can add another one for his own uses. At that point, he no longer seems worried about the ethical implications.

There is another important idea in the chapter and it actually has nothing to do with artificial intelligence, per se, though it certainly could be used as a persuasive tool by AI systems. So, rather than have a single super-intelligent being (which people might understandably have doubts about trusting), instead, there are two “Sings” and they argue with each other. These arguments reveal something about the reasoning and facts behind the two positions.Perhaps more importantly, a position is much more believable when “someone” — in this case a super-intelligent someone — .is persuaded by arguments to change their position and “agree” with the other Sing.

The story does not go into the details of how Geoffrey used his own back door into the system to drive a wedge between his boss, Ruslan and Ruslan’s wife. People can be manipulated. Readers should design their own story about how an AI system could work its woe. We may imagine that the AI system has communication with a great many devices, actuators, and sensors in the Internet of Things.

You can obtain Turing’s Nightmares here: Turing’s Nightmares

You can read the “design rationale” for Turing’s Nightmares here: Design Rationale

 

Turing’s Nightmares: Chapter 15

16 Monday May 2016

Posted by petersironwood in The Singularity, Uncategorized

≈ Leave a comment

Tags

AI, Artificial Intelligence, cognitive computing, emotional intelligence, the singularity, Turing, Tutoring

Tutoring Intelligent Systems.

MikeandStatue

Learning by modeling; in this case by modeling something in the real world.

Of course, the title of the chapter is a take off on “Intelligent Tutoring Systems.” John Anderson of CMU developed (at least) a LISP tutor and a geometry tutor. In these systems, the computer is able to infer a “model” of the state of the student’s knowledge and then give instruction and examples that are geared toward the specific gaps or misconceptions that that particular student has. Individual human tutors can be much more effective than classroom instruction and John’s tutor’s were also better than human instruction. At the AI Lab at NYNEX, we worked for a time with John Anderson to develop a COBOL tutor. The tutoring system, called DIME, included a hierarchy of approaches. In addition to an “intelligent tutor”, there was a way for students to communicate with each other and to have a synchronous or asynchronous video chat with a human instructor. (This was described at CHI ’94 and available in the Proceedings; Radlinski, B., Atwood, M., and Villano, M., DIME: Distributed Intelligent Multimedia Education, Proceeding of CHI ’94 Conference Companion on Human Factors in Computing Systems,Pages 15-16 ACM New York, NY, USA ©1994).

The name “Alan” is used in the chapter to reflect some early work by Alan Collins, then at Bolt, Beranek and Newman, who studied and analyzed the dialogues of human tutors tutoring their tutees. It seems as though many AI systems either take the approach of trying to have human experts encode knowledge rather directly or expose them to many examples and let the systems learn on their own. Human beings often learn by being exposed to examples and having a guide, tutor, or coach help them focus, provide modeling, and chose the examples they are exposed to. One could think of IBM’s Watson for Jeopardy as something of a mixed model. Much of the learning was due to the vast texts that were read in and to being exposed to many Jeopardy game questions. But the team also provided a kind of guidance about how to fix problems as they were uncovered.

In chapter 15 of Turing’s Nightmares, we observe an AI system that seems at once brilliant and childish. The extrapolation from what the tutor actually said, presumably to encourage “Sing” to consider other possibilities about John and Alan was put together with another hint about the implications of being differently abled into the idea that there was no necessity for the AI system to limit itself to “human” emotions. Instead, the AI system “designs” emotional states in order to solve problems more effectively and efficiently. Indeed, in the example given, the AI system at first estimates it will take a long time to solve an international crisis. But once the Sing realizes that he can use a tailored set of emotional states for himself and for the humans he needs to communicate with, the problem becomes much simpler and quicker.

Indeed, it does sometimes feel as though people get stuck in some morass of habitual prejudices, in-group narratives, blame-casting, name-calling, etc. and are unable to think their way from their front door to the end of the block. Logically, it seems clear that war never benefits either “side” much (although to be sure, some powerful interests within each side might stand to gain power, money, etc.). One could hope that a really smart AI system might really help people see their way clear to find other solutions to problems.

.

The story ends with a refrain paraphrased from the TV series “West Wing” — “What comes next?” is meant to be reminiscent of “What’s Next?” which President Bartlett uses to focus attention on the next problem. “What comes next?” is also a phrase used in improv theater games; indeed, it is the name of an improv game used to gather suggestions from the audience about how to move the action along. In the context of the chapter, it is meant to convey that the Sing feels no need to bask in the glory of having avoided a war. Instead, it’s on to the next challenge or the next thing to learn. The phrase is also meant to invite the reader to think about what might come next after AI systems are able both to understand and utilize human emotion but also to invent their own emotional states on the fly based on the nature of the problem at hand. Indeed, what comes next?

Turing’s Nightmares: Chapter 10

31 Thursday Mar 2016

Posted by petersironwood in The Singularity, Uncategorized

≈ Leave a comment

Tags

AI, Artificial Intelligence, cognitive computing, emotional intelligence, feelings, the singularity, Turing

snowfall

Chapter Ten of Turing’s Nightmares explores the role of emotions in human life and in the life of AI systems. The chapter mainly explores the issue of emotions from a practical standpoint. When it comes to human experience, one could also argue that, like human life itself, emotions are an end and not just the means to an end. From a human perspective, or at least this human’s perspective a life without any emotion would be a life impoverished. It is clearly difficult to know the conscious experience of other people, let alone animals, let alone an AI system. My own intuition is that what I feel emotionally is very close to what other people, apes, dogs, cats, and horses feel. I think we can all feel love, both romantic and platonic; that we all know grief; fear; anger; and peace as well as a sense of wonder.

As to the utility of emotions, I believe an AI system that interacts extremely well with humans will need to “understand” emotions and how they are expressed as well as how they can be hidden or faked as well as how they impact human perception, memory, and action. Whether a super-smart AI system needs emotions to be maximally effective is another question.

Consider emotions as a way of biasing perception, action, memory and decision making depending on the situation. If we feel angry, it can make us physically stronger and alter decision making. For the most part, decision making seems impaired, but it can make us feel at least temporarily less guilty about hurting someone or something else. There might be situations where that proves useful. However, since we tend to surround ourselves with people and things we actually like, there many occasions when anger produces counter-productive results.

There is no reason to presume that a super-intelligent AI system would need to copy the emotional spectrum of human beings. It may invent a much richer palette of emotions, perhaps as many as 100 or 10,000 that it finds useful in various situations. The best emotional predisposition for doing geometry proofs may be quite different from the best emotional predisposition for algebra proofs which again could be different from what works best for chess, go, or bridge.

Assuming that even for a very smart machine, it does not possess infinite resources, then it might be worthwhile for it to have different modes whether or not we call them “emotions.” Depending on the type of problem to be solved or situation at hand, not only should different information be input into a system but it should be processed differently as well.

For example, if any organism or machine is facing “life or death” situations, it makes sense to be able to react quickly and focus on information such as the location of potential prey, predators, and escape routes. It also makes sense to use well-tested methods rather than taking an unknown amount of time to invent something entirely new.

People often become depressed when there have been many changes in quick succession. This makes sense because many large changes mean that “retraining” may be necessary. So instead of rushing headlong to make decisions and take actions that may no longer be appropriate, watching what occurs in the new situations first is less prone to error. Similarly, society has developed rituals around large changes such as funerals, weddings, and baptisms. Because society designs these rituals, the individual facing changes does not need to invent something new when their evaluation functions have not yet been updated.

If super-intelligent machines of the future are to keep getting “better” they will have to be able to explore new possibilities. Just as with carbon-based life forms, intelligent machines will need to produce variety. Some varieties may be much more prone to emotional states that others. We could hope that super-intelligent machines might be more tolerant of a variety of emotional styles than people seem to be, but they may not.

The last theme introduced in chapter ten has been touched on before; viz., that values, whether introduced intentionally or unintentionally, will bias the direction of evolution of AI systems for many generations to come. If the people who build the first AI machines feel antipathy toward feelings and see no benefit to them from a practical standpoint, emotions may eventually disappear from AI systems. Does it matter whether we are killed by a feelingless machine, a hungry shark, or an angry bear?

————————————-

For a recent popular article about empathy and emotions in animals, see Scientific American special collector’s edition, “The Science of Dogs and Cats”, Fall, 2015.

Turing’s Nightmares

Turing’s Nightmares: Axes to Grind

08 Tuesday Sep 2015

Posted by petersironwood in Uncategorized

≈ Leave a comment

Tags

AI, Artificial Intelligence, cognitive computing, emotional intelligence, empathy, ethics, M-trans, Samuel's Checker Player, the singularity

IMG_5572

Turing Seven: “Axes to Grind”

“No, no, no! That’s absurd, Donald. It’s about intelligence pure and simple. It’s not up to us to predetermine Samuel Seven’s ethics. Make it intelligent enough and it will discover its own ethics, which will probably be superior to human ethics.”

“Well, I disagree, John. Intelligence. Yeah, it’s great; I’m not against it, obviously. But why don’t we…instead of trying to make a super-intelligent machine that makes a still more intelligent machine, how about we make a super-ethical machine that invents a still more ethical machine? Or, if you like, a super-enlightened machine that makes a still more enlightened machine. This is going to be our last chance to intervene. The next iteration…” Don’s voice trailed off and cracked, just a touch.

“But you can’t even define those terms, Don! Anyway, it’s probably moot at this point.”

“And you can define intelligence?”

“Of course. The ability to solve complex problems quickly and accurately. But Samuel Seven itself will be able to give us a better definition.”

Don ignored this gambit. “Problems such as…what? The four-color theorem? Chess? Cure for cancer?”

“Precisely,” said John imagining that the argument was now over. He let out a little puff of air and laid his hands out on the table, palms down.

“Which of the following people would you say is or was above average in intelligence. Wolfowitz? Cheney? Laird? Machiavelli? Goering? Goebbels? Stalin?”

John reddened. “Very funny. But so were Einstein, Darwin, Newton, and Turing just to name a few.”

“Granted, John, granted. There are smart people who have made important discoveries and helped human beings. But there have also been very manipulative people who have caused a lot of misery. I’m not against intelligence, but I’m just saying it should not be the only…or even the main axis upon which to graph progress. “

John sighed heavily. “We don’t understand those things — ethics and morality and enlightenment. For all we know, they aren’t only vague, they are unnecessary.”

“First of all,” countered Don, “we can’t really define intelligence all that well either. But my main point is that I partly agree with you. We don’t understand ethics all that well. And, we can’t define it very well. Which is exactly why we need a system that understands it better than we do. We need…we need a nice machine that will invent a still nicer machine. And, hopefully, such a nice machine can also help make people nicer as well. “

“Bah. Make a smarter machine and it will figure out what ethics are about.”

“But, John, I just listed a bunch of smart people who weren’t necessarily very nice. In fact, they definitely were not nice. So, are you saying that they weren’t nice just because they weren’t smart enough? Because there are so people who are much nicer and probably not as intelligent.”

“OK, Don. Let’s posit that we want to build a machine that is nicer. How would we go about it? If we don’t know, then it’s a meaningless statement.”

“No, that’s silly. Just because we don’t know how to do something doesn’t mean it’s meaningless. But for starters, maybe we could define several dimensions upon which we would like to make progress. Then, we can define, either intensionally or more likely extensionally, what progress would look like on these dimensions. These dimensions may not be orthogonal, but, they are somewhat different conceptually. Let’s say, part of what we want is for the machine to have empathy. It has to be good at guessing what people are feeling based on context alone in one case. Perhaps another skill is reading the person’s body language and facial expressions.”

“OK, Don, but good psychopaths can do that. They read other people in order to manipulate them. Is that ethical?”

“No. I’m not saying empathy is sufficient for being ethical. I’m trying to work with you to define a number of dimensions and empathy is only one.”

Just then, Roger walked in and moved his body physically from the doorway to the couch. “OK, guys, I’ve been listening in and this is all bull. Not only will this system not be “ethical”; we need it to violent. I mean, it needs to be able to do people in with an axe if need be.”

“Very funny, Roger. And, by the way, what do you mean by ‘listening in’?”

Roger moved his body physically from the couch to the coffee machine. His fingers fished for coins. “I’m not being funny. I’m serious. What good is all our work if some nutcase destroys it. He — I mean — Samuel has to be able to protect himself! That is job one. Itself.” Roger punctuated his words by pushing the coins in. Then, he physically moved his hand so as to punch the “Black Coffee” button. Nothing happened.

And then, everything seemed to happen at once. A high pitched sound rose in intensity to subway decibels and kept going up. All three men grabbed their ears and then fell to the floor. Meanwhile, the window glass shattered; the vending machine appeared to explode. The level of pain made thinking impossible but Roger noticed just before losing consciousness that beyond the broken windows, impossibly large objects physically transported themselves at impossible speeds. The last thing that flashed through Roger’s mind was a garbled quote about sufficiently advanced technology and magic.

Newer posts →

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • January 2026
  • December 2025
  • November 2025
  • October 2025
  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • September 2024
  • July 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • August 2023
  • July 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • May 2015
  • January 2015
  • July 2014
  • January 2014
  • December 2013
  • November 2013

Categories

  • AI
  • America
  • apocalypse
  • cats
  • COVID-19
  • creativity
  • design rationale
  • dogs
  • driverless cars
  • essay
  • family
  • fantasy
  • fiction
  • HCI
  • health
  • management
  • nature
  • pets
  • poetry
  • politics
  • psychology
  • Sadie
  • satire
  • science
  • sports
  • story
  • The Singularity
  • Travel
  • Uncategorized
  • user experience
  • Veritas
  • Walkabout Diaries

Meta

  • Create account
  • Log in

Blog at WordPress.com.

  • Subscribe Subscribed
    • petersironwood
    • Join 661 other subscribers
    • Already have a WordPress.com account? Log in now.
    • petersironwood
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...